[Different Membrane Environments Generate Multiple Functions of P-type Ion Pumps].

Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama.

Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2021;(11):1217-1222

Other resources

Abstract

P-type ion pumps (P-type ATPases) are involved in various fundamental biological processes. For example, the gastric proton pump (H+,K+-ATPase) and sodium pump (Na+,K+-ATPase) are responsible for secretion of gastric acid and maintenance of cell membrane potential, respectively. In this review, we summarize three topics of our studies. The first topic is gastric H+,K+-ATPase associated with Cl--transporting proteins (Cl-/H+ exchanger ClC-5 and K+-Cl- cotransporter KCC4). In gastric parietal cells, we found that ClC-5 is predominantly expressed in intracellular tubulovesicles and that KCC4 is predominantly expressed in the apical membrane. Gastric acid (HCl) secretion may be accomplished by the two different complexes of H+,K+-ATPase and Cl--transporting protein. The second topic focuses on the Na+,K+-ATPase α1-isoform (α1NaK) associated with the volume-regulated anion channel (VRAC). In the cholesterol-enriched membrane microdomains of human cancer cells, we found that α1NaK has a receptor-like (non-pumping) function and that binding of low concentrations (nM level) of cardiac glycosides to α1NaK activates VRAC and exerts anti-cancer effects without affecting the pumping function of α1NaK. The third topic is the Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells. We found that α3NaK is abnormally expressed in the intracellular vesicles of attached cancer cells and that the plasma membrane translocation of α3NaK upon cell detachment contributes to the survival of metastatic cancer cells. Our results indicate that multiple functions of P-type ion pumps are generated by different membrane environments and their associated proteins.

Methodological quality

Publication Type : Review

Metadata